276°
Posted 20 hours ago

The Electromagnetic Spectrum Poster - Educational Science Teaching Resource (A1 Size 59.4 x 84.1 cm)

£9.9£99Clearance
ZTS2023's avatar
Shared by
ZTS2023
Joined in 2023
82
63

About this deal

thermal radiation. Provided by: Wiktionary. Located at: en.wiktionary.org/wiki/thermal_radiation. License: CC BY-SA: Attribution-ShareAlike spectral color. Provided by: Wikipedia. Located at: en.Wikipedia.org/wiki/spectral%20color. License: CC BY-SA: Attribution-ShareAlike Near-infrared, from 120 to 400 THz (2,500 to 750 nm) – Physical processes that are relevant for this range are similar to those for visible light. The highest frequences in this region can be detected directly by some types of photographic film, and by many types of solid state image sensors for infrared photography and videography.

Atmospheric Transmittance: This is a plot of Earth’s atmospheric transmittance (or opacity) to various wavelengths of electromagnetic radiation. Most UV wavelengths are absorbed by oxygen and ozone in Earth’s atmosphere. Observations of astronomical UV sources must be done from space. Lower doses of X-ray radiation can be very effectively used in medical radiography and X-ray spectroscopy. In the case of medical radiography, the benefits of using X-rays for examination far outweighs the risk. thermal radiation: The electromagnetic radiation emitted from a body as a consequence of its temperature; increasing the temperature of the body increases the amount of radiation produced, and shifts it to shorter wavelengths (higher frequencies) in a manner explained only by quantum mechanics. radiograph: An image, often a photographic negative, produced by radiation other than normal light; especially an X-ray photograph. ionizing radiation. Provided by: Wiktionary. Located at: en.wiktionary.org/wiki/ionizing_radiation. License: CC BY-SA: Attribution-ShareAlike

Get to know us

radar: A method of detecting distant objects and determining their position, velocity, or other characteristics by analysis of sent radio waves (usually microwaves) reflected from their surfaces. The distinction between X-rays and gamma rays has changed in recent decades. Originally, the electromagnetic radiation emitted by X-ray tubes almost invariably had a longer wavelength than the radiation (gamma rays) emitted by radioactive nuclei. Older literature distinguished between X- and gamma radiation on the basis of wavelength, with radiation shorter than some arbitrary wavelength, such as 10 −11 m, defined as gamma rays. However, with artificial sources now able to duplicate any electromagnetic radiation that originates in the nucleus, as well as far higher energies, the wavelengths characteristic of radioactive gamma ray sources vs. other types, now completely overlap. Thus, gamma rays are now usually distinguished by their origin: X-rays are emitted by definition by electrons outside the nucleus, while gamma rays are emitted by the nucleus.

Radio waves are a type of electromagnetic (EM) radiation with wavelengths in the electromagnetic spectrum longer than infrared light. They have have frequencies from 300 GHz to as low as 3 kHz, and corresponding wavelengths from 1 millimeter to 100 kilometers. Like all other electromagnetic waves, radio waves travel at the speed of light. Naturally occurring radio waves are made by lightning or by astronomical objects. Artificially generated radio waves are used for fixed and mobile radio communication, broadcasting, radar and other navigation systems, communications satellites, computer networks and innumerable other applications. Different frequencies of radio waves have different propagation characteristics in the Earth’s atmosphere—long waves may cover a part of the Earth very consistently, shorter waves can reflect off the ionosphere and travel around the world, and much shorter wavelengths bend or reflect very little and travel on a line of sight. The portion of the EM spectrum used by photosynthesic organisms is called the photosynthetically active region (PAR) and corresponds to solar radiation between 400 and 700 nm, substantially overlapping with the range of human vision.optical window: the optical portion of the electromagnetic spectrum that passes through the atmosphere all the way to the ground. The window runs from around 300 nanometers (ultraviolet-C) at the short end up into the range the eye can use, roughly 400-700 nm and continues up through the visual infrared to around 1100 nm, which is thermal infrared.

gamma decay. Provided by: Wiktionary. Located at: en.wiktionary.org/wiki/gamma_decay. License: CC BY-SA: Attribution-ShareAlikenewcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\) The lowest frequency portion of the electromagnetic spectrum is designated as “radio,” generally considered to have wavelengths within 1 millimeter to 100 kilometers or frequencies within 300 GHz to 3 kHz.

Asda Great Deal

Free UK shipping. 15 day free returns.
Community Updates
*So you can easily identify outgoing links on our site, we've marked them with an "*" symbol. Links on our site are monetised, but this never affects which deals get posted. Find more info in our FAQs and About Us page.
New Comment